The SVOM mission and the collaboration with the Maidanak observatory

Bertrand Cordier CEA

on behalf of the SVOM collaboration

November 3, 2021

The SVOM Collaboration

wjy@nao.cas.cn

China (PI J. Wei)

- SECM Shanghai
- NAOC Beijing
- IHEP Beijing
- GuangXi University Nanning

bertrand.cordier@cea.fr

France (PI B. Cordier)

- CNES Toulouse
- CEA Saclay
- APC paris
- CPPM Marseille
- GEPI Meudon
- IAP Paris
- IJC Lab Orsay
- IRAP Toulouse
- LAM Merseille
- LUPM Montpellier
- OAS Strasbourg
- OCA Nice

Mexico UNAM Mexico

UK University of Leicester

Germany MPE Garching

Time-domain astronomy

- Time-domain astronomy is a priority area of research in the next decade
- Hot topics: explosive transients (GRBs, SN shock breakouts, TDE, FRB), multi-messenger astronomy (GWs, neutrinos)

SVOM "Space-based multi-band astronomical Variable Objects Monitor" a Sino-French mission dedicated to GRBs and transient sources to be launched mid 2023, duration 3+2 years

INSTRUMENTS with LARGE FIELD OF VIEW IN SPACE

ECLAIRS (CNES, IRAP, CEA, APC)

- 40% open fraction
- Detection plane: 1024 cm²
- 6400 CdTe pixels (4x4x1 mm³)
- FoV: 2 sr (zero sensitivity)
- Energy range: 4 150 keV
- Localization accuracy <12 arcmin for 90% of sources at detection limit
- Onboard trigger and localization: ~65 GRBs/year

Will detects, localizes and characterizes HE transients. It generates alerts and slew requests:

Well adapted for the detection of IGRB with low EPEAK

GRM Gamma-Ray Monitor (IHEP)

- 3 Gamma-Ray Detectors (GRDs)
- Nal(TI) (16 cm Ø, 1.5 cm thick)
- Plastic scintillator (6 mm) to monitor particle flux and reject particle events
- FOV: 5,6 sr 3 GRDs, 1,0 intersection of 3 GRDs
- Energy range : 30-5000 keV
- Aeff = **190 cm²** at peak
- Rough localization accuracy
- Expected rate: ~90 GRBs / year

Will provide EPEAK measurements for most ECLAIRs GRBs Will detect short GRBs in & out of the ECLAIRs FOV

ECLAIRS FM STATUS

Detection plane

Onboard computer

Coded mask

Structure, mechanical & thermal

December 20, the flight models of all subsystems have been manufactured

July 21, instrument fully integrated

INSTRUMENTS with LARGE FIELDS of VIEW: on GROUND

Ground Wide Angle Cameras (NAOC) cameras: 40 wavelength : 500-800nm 5000 deg2, mV= 16 (10s) Self Trigger

Search for prompt visible counterparts of GRB

 Of course this instrument can be used to search for electromagnetic counterpart in the large error boxes of gravitational wave detectors

INSTRUMENTS with SMALL FIELD OF VIEW IN SPACE

MXT Micro-channel X-ray Telescope (CNES, CEA, UL, MPE)

- Micro-pores optics (Photonis) with 40 µm square pores in a "Lobster Eye" conf. (UL design)
- pnCCD (MPE) based camera (CEA)
- FoV : 64x64 arcmin²
- Focal length: 1 m
- Energy range : 0.2 10 keV
- Aeff = 27 cm² @ 1 keV (central spot)
- Energy resolution: ~80 eV @ 1.5 keV
- Localization accuracy <13 arcsec within 5 min from trigger for 50% of GRBs (statistical error only)

Implements innovative focussing X-ray optics based on « Lobster-Eye » design Will reduce the ECLAIRs error box

Will be able to promptly observe the X-ray afterglow

VT Visible Telescope (XIOMP, NAOC)

- Ritchey-Chretien telescope, 40 cm Ø, f=9
- FoV: 26x26 arcmin², covering ECLAIRs error box in most cases
- 2 channels: blue (400-650 nm) and red (650-1000 nm), 2k * 2k CCD detector each
- Sensitivity MV=23 in 300 s
- Will detect ~80% of ECLAIRs GRBs
- Localization accuracy <1 arcsec

Able to detect high-redshift GRBs up to z~6.5 (sensitivity cutoff around 950 nm) Can quickly provide redshift indicators due to the presence of two channels

MXT FM STATUS

Detector and camera

Onboard computer

Optics

Structural tube

December 20, the flight models of all subsystems have been manufactured

July 21, instrument fully integrated

INSTRUMENTS with SMALL FIELDS of VIEW: on GROUND

Grounf Follow-up Telescopes permit the fast identification and measure of early optical/NIR afterglows using the ECLAIRs positions, while the spacecraft is slewing to the source.

- C-GFTs is located at Weihai observatory (Jilin province)
- F-GFT will be located at San Pedro Martir (Mexico)

Diameter : 120cm FOV : 90 x 90 arcmin 400 – 900nm

Diameter : 130 cm FOV : 26 x 26 arcmin 400 – 1700 nm

Guaranteed access to the LCOGT network through NAOC (2000hr/year) >75% of ECLAIRs-detected GRBs immediately visible by one ground telescope (GFTs+LCOGT)

SVOM INSTRUMENTS COMMUNICATE WITH EACH OTHER

GRM -> ECLAIRs to help the detection of short GRB MXT-> VT to search for sources in the VT image inside the MXT error ECLAIRs , MXT and VT -> GWAC and GFTs to indicate the coordinates of te GRB GRM-> GWAC to indicate the time slice of the trigger

Alerts are transmitted to a network of ~40 VHF receivers on Earth
Goal: 65% of the alerts received within 30 s at the French Science Center

Le déploiement - suite

Station Station Installée Station sur place/en transit

NB : cercles de visibilité théoriques à EL=10°

Accords de principes

Svom

Discussions engagées

cnes .

Florilèges des stations installées

SVOM SPECTRAL AND TEMPORAL COVERAGE

A powerful time domain machine

Trigger and locate (hard) X-ray transients

- Multi-wavelength follow-up
- Alerts and localization distributed in real-time => follow-up from other facilities

LEO altitude 625 km, with an inclination of 30°, launched by a LM-2C from Xichang

- \rightarrow the satellite passes though the South Atlantic Anomaly
- \rightarrow induces a dead time of (13-17)%

The SVOM attitude law

To detect GRB on the night side \rightarrow attitude law : roughly antisolar

Optimization of the SVOM attitude law

To favor the GRB detection by ECLAIRs

- avoidance of the the Sco X1source (outsite of the ECLAIRs FOV)
- avoidance of the Galactic Plane (+/- 10° for the ECLAIRs FOV)

To favor the redshift measurement on ground.

- avoidance of the Galactic Plane (+/- 10° for the ECLAIRs FOV)
- \rightarrow to favor the sky area observable from both Hawaii, Chile and the Canary
- \rightarrow SVOM points to areas near the equator (declination δ =0)

To maintain a cold face for the satellite Offset of 45° with respect to the antisolar direction

Tolerance of 5° with respect to the nominal pointing

The SVOM attitude law: consequences on the exposure map 1 year scenario

SVOM - SecondPointing Expo Map - 5deg/B1 law

Galactic coordinates

Wide field instruments : ECLAIRS, GRM,

Galactic coordinates

Narrow field instruments : MXT, VT

The SVOM GRB sample

A unique sample of **30-40 GRB/yr** with:

- prompt emission over 3 decades (+ optical flux/limit: 16%)
- X-ray and V/NIR afterglow
- redshift

	Swift	Fermi	SVOM
Prompt	Poor	Excellent 8 keV -100 GeV	Very Good 4 keV - 5 MeV
Afterglow	Excellent	> 100 MeV for LAT GRBs	Excellent
Redshift	~1/3	Low fraction	~2/3

Physical mechanisms at work in GRBs

- Nature of GRB progenitors and central engines
- Acceleration & composition of the relativistic ejecta
- Diversity of GRBs: event continuum following the collapse of a massive star
 - Low-Iuminosity GRBs / X-ray rich GRBs / X-ray Flashes and their afterglow
 - GRB/SN connection

Short GRBs and the merger model

GW association

Operational Scenario for GRB detection by SVOM

SVOM Satellite detects a GRB

 S_{VOM} ... Now that this whole system is in place, SVOM is a powerful time domaine machine that can work in both direction

SVOM as an open observatory

The general program (GP)

 Observation proposals being awarded by a TAC (a SVOM co-I needs to be part of your proposal) for astrophysical targets of interest mostly compliant with the satellite attitude law

Target of Opportunity (ToO) programs

- **ToO-NOM** is the nominal ToO which covers the basic needs for efficient transient follow-up alerts sent from the ground to the satellite (GRB revisit, known source flaring, new transient)
- ToO-EX is the exceptional ToO which covers the needs for a fast ToO-NOM in case of an exceptional astrophysical event we want to observe rapidly.
- **ToO-MM** is the ToO-EX dedicated to EM counterpart search in response to a multi-messenger alert. What differs from the ToO-NOM and ToO-EX is the unknown position of the source within a large error box...

The SVOM ToO programs

DVOM WORLD Only accessible by the SVOM CO-Is

ToO-Multi-Messenger

- 1/week
- Allocated time: 1-14 orbits (1 day)
- Max latency: 12h (S-Band) / <4h (Beidou)
- Instruments: MXT, VT + grd seg.

ToO-EXceptional

- 1/month
- Allocated time: 7-14 orbits (1 day)
- Max latency: 12h (S-band) / <4h (Beidou)
- Instruments: MXT, VT + grd seg.

Maidanak participation to SVOM project

SVOM and Maidanak

- The Maidanak observatory hosts a VHF SVOM station, as such the Maidanak observatory will be in a position to request 3 nominal ToO per year
- The SVOM team will help the Maidanak scientist to process their SVOM data.
- SVOM consortium wants Maidanak to become an associate partner. Such a partner is a voluntary facility, which responds at its convenience to the SVOM alerts.
- The partner commits itself on the basis of a best effort. The acquired data are not automatically considered as SVOM data.
- The management of the data sharing (from the partner to SVOM and vice-versa) and of the resulting publications is then done on a case by case basis, following specific agreements (if any).
- $\circ~$ To be discussed in the near future

Organization of the SVOM Follow-up system, operational end 2022 and based on the attractiveness of SVOM The exchanges between SVOM and its various partners are defined in the updated SVOM Science Management Plan

CONCLUSION, in the next decade

- SVOM is mini-satellite class mision (< 1000kg)
- SVOM will provide ~80 GRB/yr.
- SVOM will study the GRBs in a wide spectral band (from Gamma-ray to IR)
- We aim to measure the redshift for >50% of the SVOM GRBs, thanks to the attitude law of he spacecraft and the follow-up netwok
- The Maidanak Observatory will have the possibility to apply for 3 ToO/year, which concerns the observation of a source with all the instruments of the mission.
- By becoming a partner of SVOM, the Maidanak observatory will be able to contribute to the monitoring of alerts and enrich the spectro-temporal coverage of the SVOM sample.

NAOC, Beijing IHEP, Beijing XIOPM, Xi'an SECM, Shanghai CEA-Irfu, Saclay IRAP, Toulouse APC, Paris IAP, Paris LAM, Marseille Obs Strasbourg LPAG Grenoble LUPM Montpellier LAL Orsay **GEPI** Meudon LPC2E Orléans University of Leicester MPE, Garching CNES, Toulouse

launch mid 2023

GO SVOM!