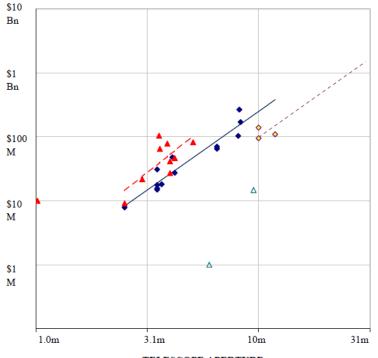
Building an Affordable 4m Class Optical-NIR Telescope


Padmakar Parihar

Indian Institute of Astrophysics, Bangalore India

6th Madanak User Meeting: 01-03 November 2021

Outline

- Cost of large telescopes
- Segmented Mirror Technology
- Conceptual Opto-Mechanical Design of 4m telescope
- Cost drivers and way to reduce the cost
- A Four meter class telescope for MAO

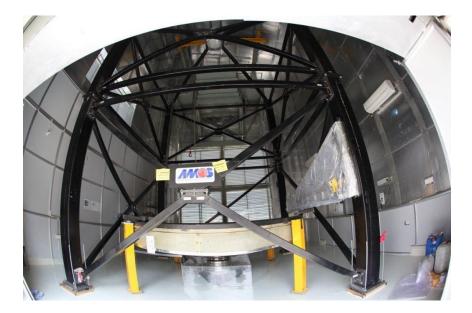
TELESCOPE APERTURE

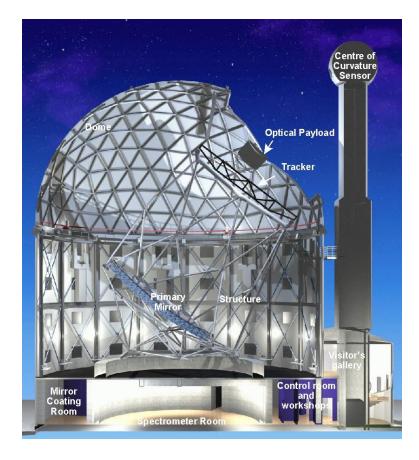
Costing ground based telescopes

Cost Scaling laws:

Cost = $K D^{2.8}$ (for classical telescopes)

Cost = $K D^{1.7}$ (for segmented telescopes)


Cost = $K M^3$


$$C = C_P n^{-1} L^{0.5} + C_F n^{-0.32} L^2 + C_M n^{-0.1} L^3$$

Telescope	Organization	Size(m)	Cost (\$m)	Year	Cost (2000)	Mass
AAT	AAO	3.9	22.8	1973	78.8	-
ESO 3.6m	ESO	3.6	41.7	1977	104.3	240
CFHT	CFHT Cons	3.6	30.0	1979	65.1	-
WHT	Obs. Cons	4.2	21.5	1979	46.6	210
NTT	ESS	3.5	13.0	1988	17.6	110
ARC	Apache Point Obs.	3.5	11.0	1988	14.9	-
WIYN	WIYN Cons	3.5	14.0	1994	15.7	-
AEOS	USAF	3.7	18.2	2000	18.2	75
SOAR	СТІО	4.2	28.0	2001	27.4	-
DOT	ARIES	3.6	18.0	2016	18.0	150
SEIMEI	Kyoto Univ	3.8	15.0	2018	15.0	18

Kaler et al (1997), Belle et al (2004), Jeffrey et al (2008)

Costing ground based telescopes

Costing the Ground based Telescopes

Many segments and few dollars:

SALT solutions for ELTs ?

D. A. H. Buckley^{1a}, J. G. Meiring^{2a}, J. Swiegers^{3a} and G. Swart^{4a},

Southern African Large Telescope Foundation, Observatory, Cape Town, South Africa

ABSTRACT

The Southern African Large Telescope (SALT) is a little over 18 months away from completion (in early 2005). It is based on the innovative tilted-Arecibo optical analog, first pioneered by the Hobby-Eberly Telecope (HET). By the end of 2003, all major subsystems, including the verification instrument, will be in place and the commissioning of them begun. Tests of a 7-segment subset of the mirror array, including the Shack-Hartmann alignment instrument, the mirror actuators, capacitive edge sensors and active control system has recently started. The first engineering on-sky tests involving the complete light path, from object to detector, have begun.

System	Budgeted amount	Cost at Completion	Over/under spend
Facility building	\$2.340M	\$1.944M	-16.92%
Telescope structure	\$1.040M	\$0.574M	-44.81%
Dome	\$0.868M	\$0.590M	-32.03%
Tracker and payload	\$2.391M	\$3.018M	+30.14%
Primary mirror system	\$5.927M	\$6.006M	+1.34%
Telescope control system	\$0.589M	\$0.505M	-14.22%
Engineering	\$0.360M	\$0.388M	+7.78%
Science instruments*	\$1.349M	\$1.553M	+15.12%
Project Management	\$3.290M	\$3.896M	+18.42%
Contingency risk**	\$1.647M	\$1.501M	-8.86%
Foreign exchange losses	\$0.000M	\$0.465M	
SALT Total	\$19.728M	\$20.440M	+3.60%

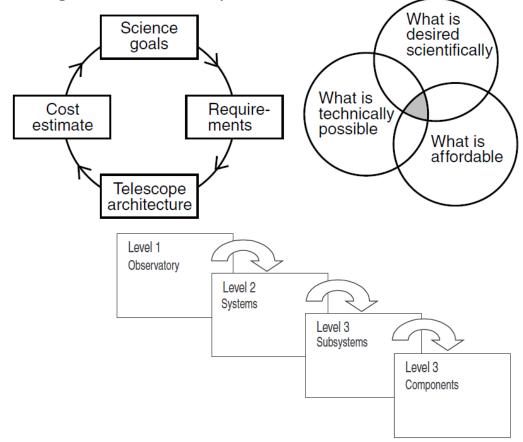
N.B. * cash only component of instrument budget, not including in-kind/non-cash components ** amount used to date. Expect to use more before completion of project.

Table 4: Costs of SALT systems compared to originally budgeted amounts

Fast Development & Lesser cost

We should aim to have inexpensive telescope without compromising with the performances.

GTC was 160m USD whereas SLAT/HET are just 25m USD telescope


As much as possible we should use existing technology /design/facilities , which will not only reduce the cost but also save lot of construction time.

We should aim to have telescope of 4m class by 5-6m USD and 10m class within 50m USD.

Requirement and Design

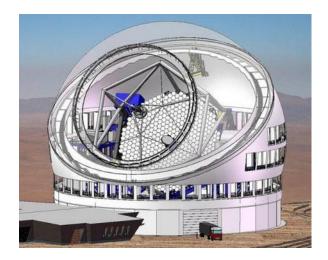
Based on top level science requirement one need to design telescope optomechanical system, control and the instruments.

It's an iterative process and takes quite a lot of time to come up with the base line design of the telescope

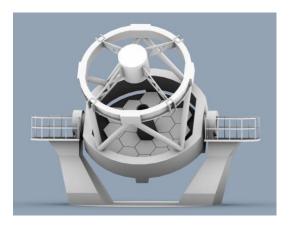
Segmented Mirror: A technology for large telescopes

Mid size (4-5m)

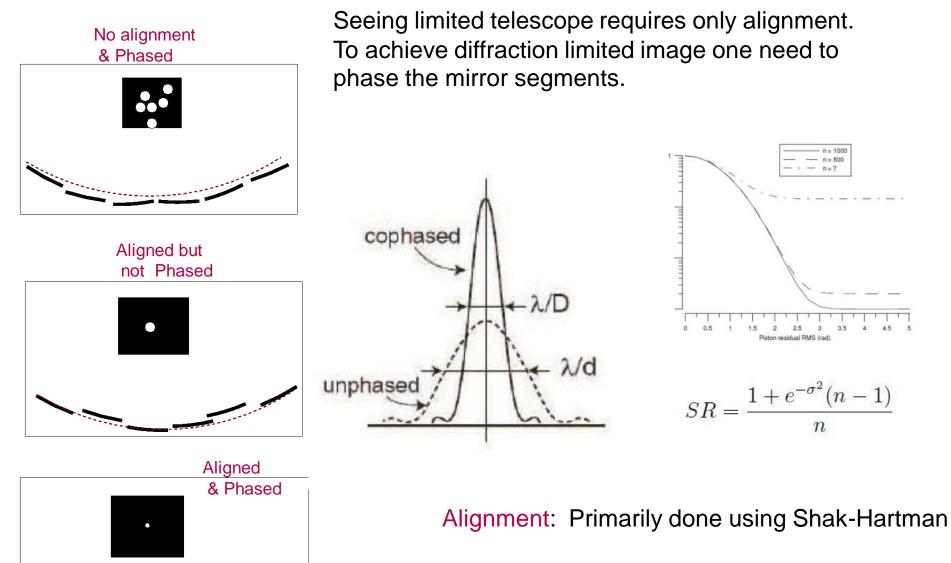
Large size (10-12m)

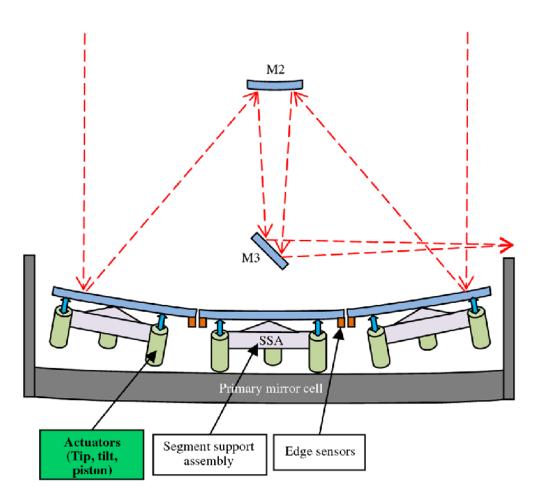

Prime focus corrector and support system Telescope tube Up layer Nasmyth platform Down layer Nasmyth platform

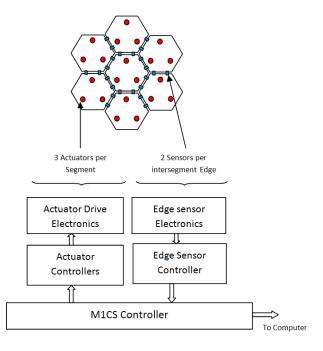
Primary mirror and



zimuth turn tab


Mega size (30-40m)

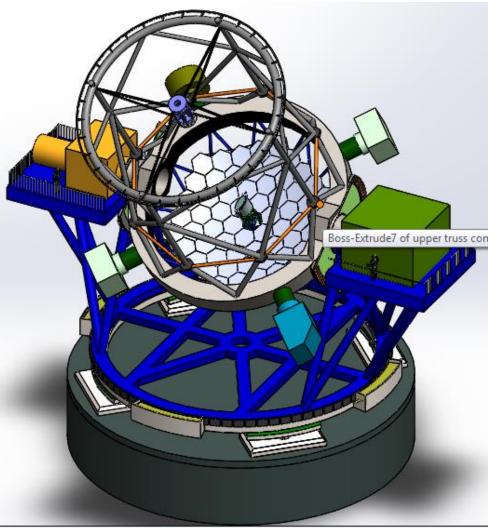

Segmented Mirror: A technology for large telescopes



Phasing: SH, Pyramid Sensor, Interferometers

Primary Mirror Control

M1CS Architecture

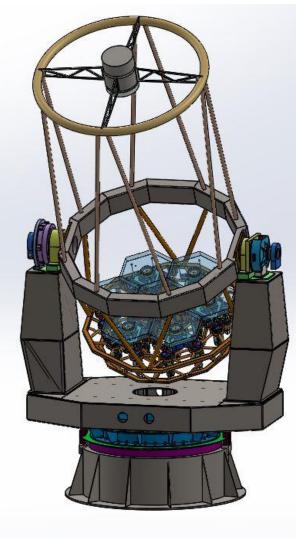


Az = s

 $z = A^{-1} s$

Where A is control matrix, S is sensor reading, and z is actuator displacement. A depends only on geometry and usually not a square matrix

Building 10m class Segmented Mirror Telescope in Ind



- •10-12m size segmented mirror telescope
- RC Optics
- •Fully steerable Alt/AZ Telescope
- Undersized Secondary for the NIR
- •Removable/Retractable Tertiary
- •2 Nasmyth Focus for large instruments
- Cassegrain Focus
- •4 Bent Cassegrain for small instrument and APS
- Driven by Direct drive motors
- Hydro-static bearing for both Azimuth and

Elevation

A pilot project for Technological Exploration

1.3m dia PSMT

•Segmented mirror Technology is not yet standardized.

•Require experimentation on primary mirror control and alignment/phasing.

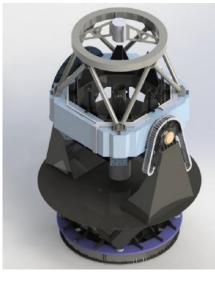
•It is good to understand complication prior to embarking to large telescope project and avoid the risk linked with the performance (HET, SALT examples).

• A prototype telescope made of 7 spherical mirror segment is developed in IIA.

•Telescope will have all complexities as one can expect in a large segmented mirror telescope.

3.6m Indian Telescope

4m class telescopes in Asia

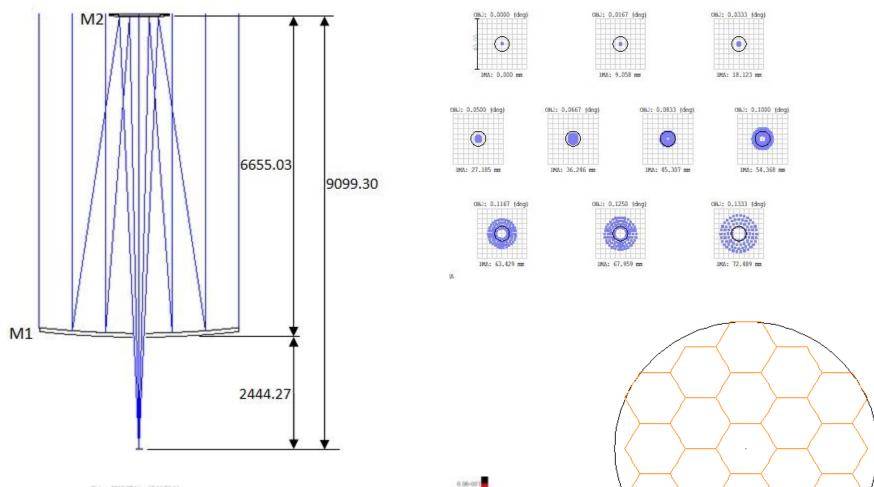

✤0.5-2.0 m size telescopes have now become very small observing tool and mostly evolved in time series studies of relatively bright objects.

In the era of mega telescope of 30-40m size, 4m class telescope becomes a necessary requirement to any astronomical community desire to make meaningful contribution to the science.

There are at least half dozen telescope projects at various state of realization within Asia.

3.8m Japanese

4m DAG Turkish


Iranian 3.4m INO

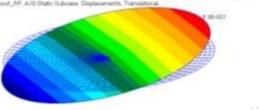
3.8m Indonesian

Base-line requirement for the 4m telescope

- I. Fully steerable telescope 4m class telescope.
- ii. Telescope should cove both optical and NIR observing window (0.35 to 5 micron)
- 111. 5' (Diffraction limited) 20' (degraded) performance.
- **1V.**Telescope optics should not degrade site seeing by more than 10%
- V. Possibility of hosting 3-4 large instruments (Nasmyth or Cassegrain focus)
- V1.Light weight and structerlly stiff
- V11.Should be make use of segmented mirror technology
- V111.Aim to have low cost telescope (within 5-6 million USD)
- 1X. Should be developed, using local design and manufacturing capabilities

Option with RC Optics

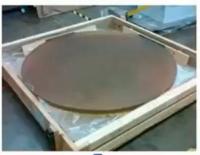
6.05-011


614-001

4.24-001

2 43-001 1 50-000 6 16-002 6 16-002 6 20-001 -1 20-001 -2 10-001 -0 00-001 -0 00-001 -4 00-001 -4 00-001 -2 6谷昭

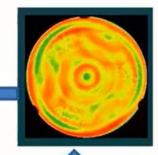
Patran 2010 06-May-15 11 52 12


Proge Roundet, whout, g. whout, RF AIR State Subcess Deplecements Translational 2 Component (NOR-LAYERED) Detroit Foundet, whout, BF AIR State Subcess Deplecements Translational

Option with RC Optics

The Primary Mirror:

Mirror Blank



Most difficult and complex tasks involved.

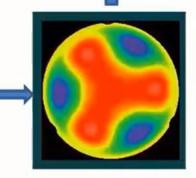
Journey has just begun, there are miles to go


ITOFF, CREST Hosakote

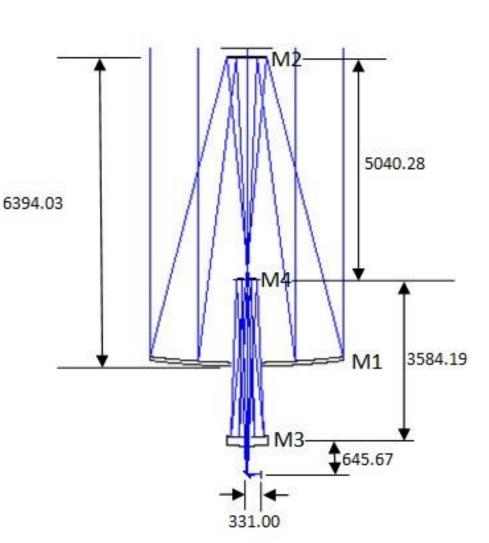
IBF

hal

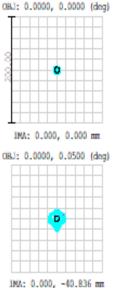
Hex Cutting



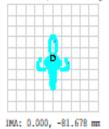
Pocketing

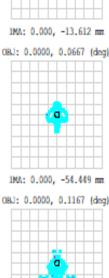


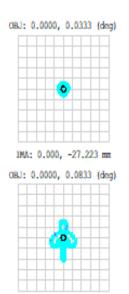
Integrating with SSA

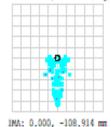


Primary Mirror (M1):	
ROC	-17.48m
Diameter	4.4m
Hole radius	350mm
Secondary	
Mirror(M2):	5.593m
ROC	0.9069m
Diameter	
Tertiary Mirror(M3):	
ROC	-5.4974m
Diameter	0.8461m
Hole radius	118.860mm
Aspheric	
Mirror(M4):	41.90m
ROC	0.4522m
Diameter	74.0960mm
Hole radius	3.6336e-5
2 nd order term	-1.656e-10
4 th order term	-3.331e-17
6 th order term	
System Fno.	10.6387

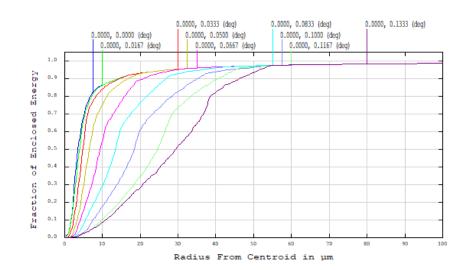



Design: Inspired by R.N. Wilsons many papers & book, and Mikio Kurita (2017)

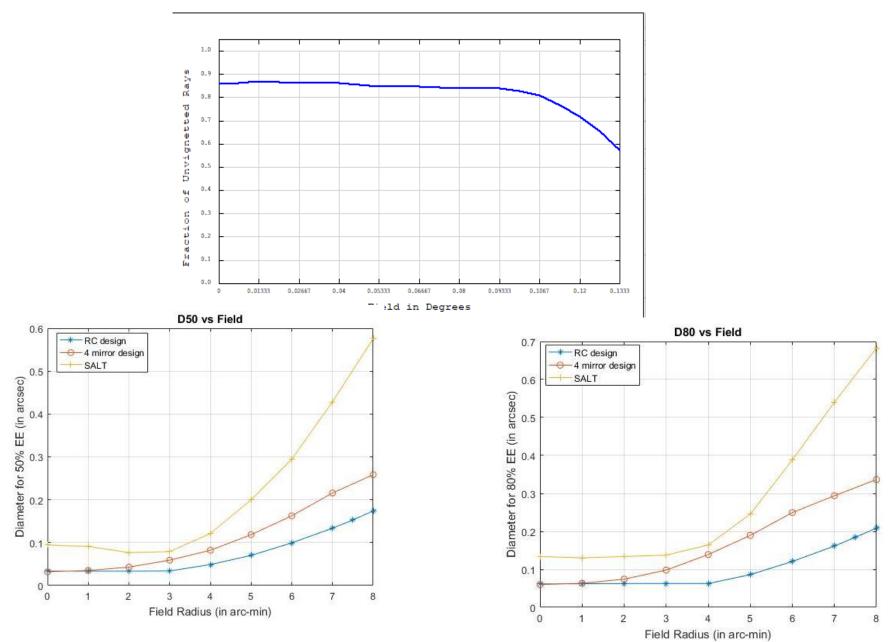

OBJ: 0.0000, 0.1000 (deg)

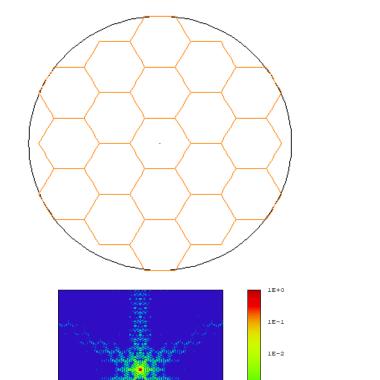

OBJ: 0.0000, 0.0167 (deg)

INA: 0.000, -95.295 mm

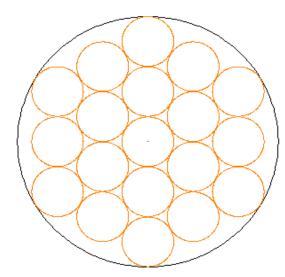


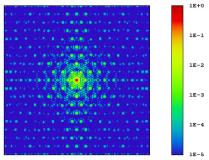
IMA: 0.000, -68.060 mm


OBJ: 0.0000, 0.1333 (deg)

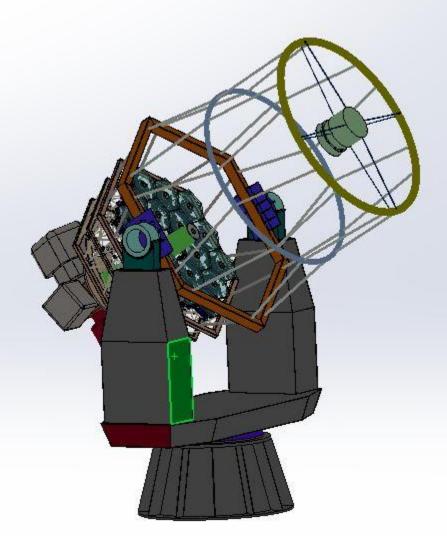

Field Value	50% EE in arc-	80% EE in arc-sec
(Diameter)	sec	
0	0.03181	0.05995
2'	0.03499	0.06327
4'	0.04288	0.07415
6'	0.05906	0.09810
8'	0.08214	0.13899
10'	0.11855	0.18959
12'	0.16253	0.24952
14'	0.21577	0.29395
16'	0.25843	0.33652

INA


Geometry of the Segments



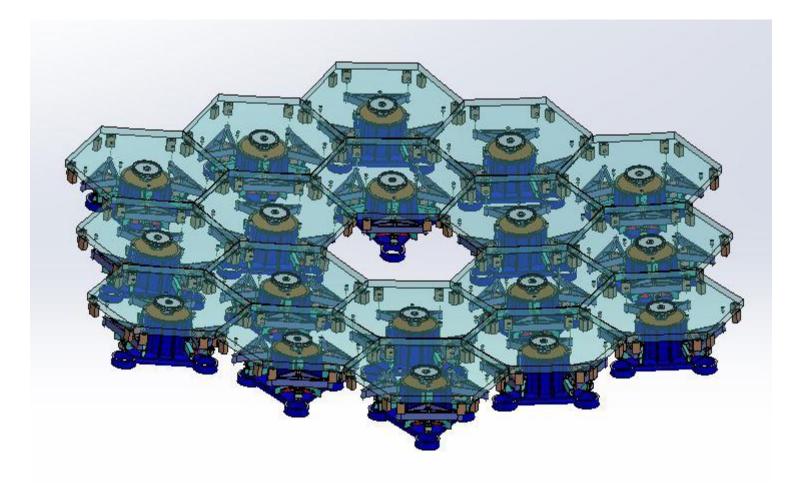
1E-3


1E-4

1E-5

Wavelength	Diffraction limited	FWHM for hexagonal	FWHM for circular
(in micron)	spot diameter	segments	segments
0.32	0.03777"	0.01719"	0.01719"
0.55	0.06492"	0.02954"	0.02955"
0.65	0.07672"	0.03491"	0.03491"
1.6	0.18885"	0.08591"	0.08591"
2.4	0.28325"	0.12890"	0.12890"

- ♦Alt/Az Telescope.
- ♦Uses 18 spherical Mirrors.
- Cassegrain is preferred focus.
- ◆Driven by direct drive (no gear).
- Hexapod based secondary.


Concept of the telescope and its subsystem
 are continuously being improved.

◆Telescope will be light weight but very stiff, that it can work in windy environments.

Hexapod based Secondary Drive

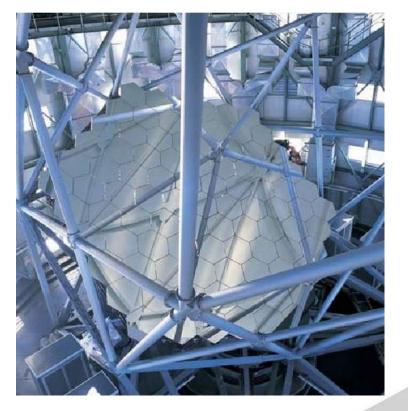
Segmented Primary Mirror

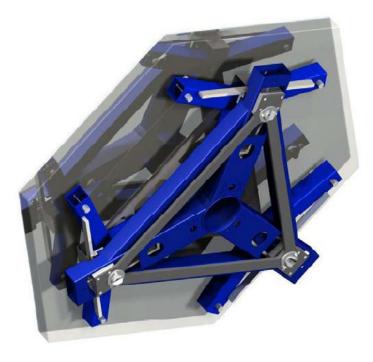
2.6 ton Primary mirror including mirror segments support

Segment Support

<image>

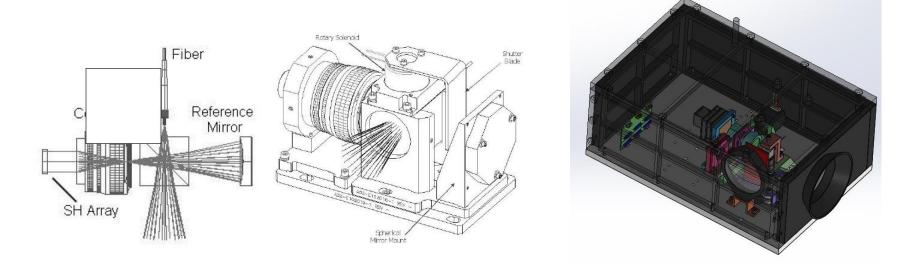
Displacement - Nodal, Magnitude Min : 0, Max : 0.000186404, Units = mm Deformation : Displacement - Nodal Magnitude 0.000186404 0.00017087 0.000155336 0.000139803 0.000124269 0.000108735 9.32018e-05 7.76682e-05 6.21345e-05 4.66009e-05 3.10673e-05 1.55336e-05 [mm]

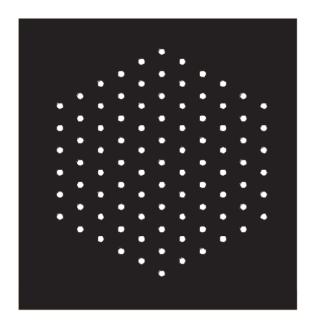

1m cicular blank_50mm thick_17.409m Roc_sim1 : Copy of Copy of Copy of Solution 1 Result

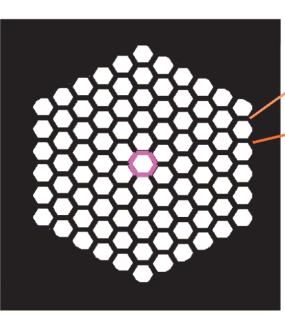

Subcase - Static Loads 1, Static Step 1

Maintain the shape of the mirror to λ/30
9 point wiffle tree axial support
Central radial support
Moving frame allows large tip/tilt/piston for segment alignment
Kinematic registration.
Minimized mass (145 Kg including segment)

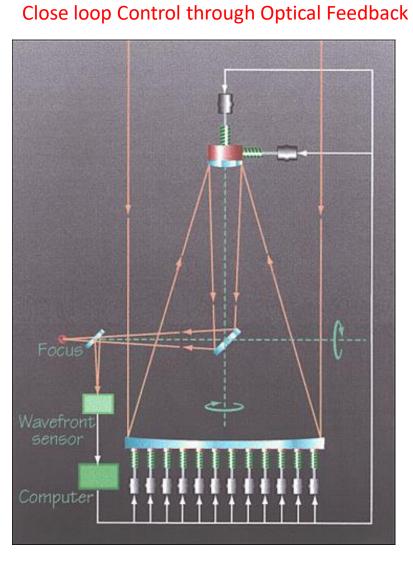
Segment Support

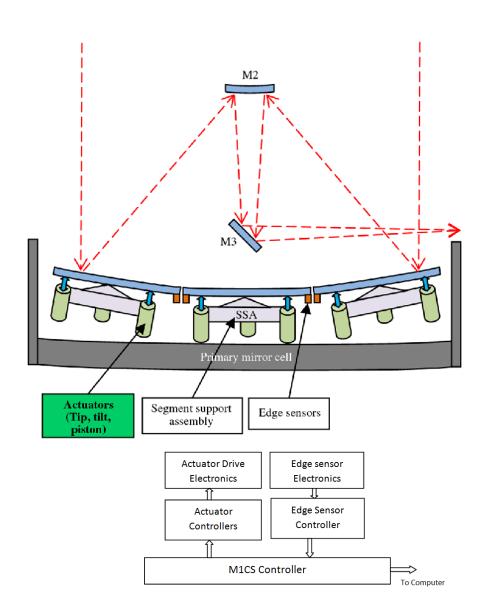

Using building block of the SALT Primary Mirror for the 4m telescope



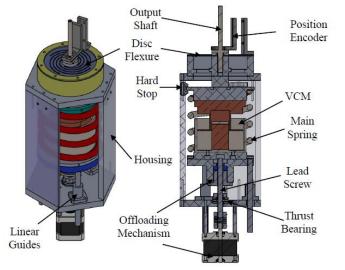

Requires only 18 SALT Segments

Segment Alignment and Phasing (APS):

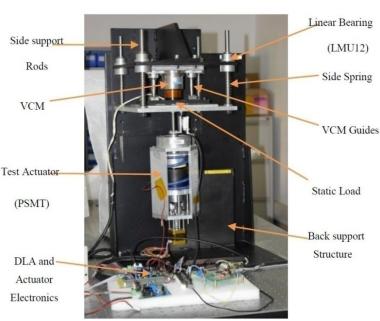

Coarse Hartmann Mask


Detail

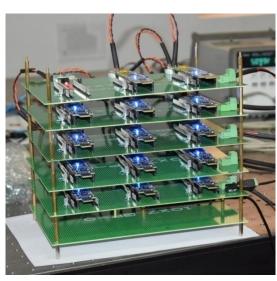
Fine Hartmann Lenslet Array


Handling Segmented Primary Mirror

Close loop Control through Edge Sensor Feedback



Actuator for the PSMT



Parameter	Value
Stroke	±1.5mm
Position accuracy	<10 nm
Stifness	20,000 N/m
Weight	< 6 Kg
Power	< 1.5 W

The Requirements

Prototype PSMT Actuator

Actuator Controller

Features:

Uses VCM as prime

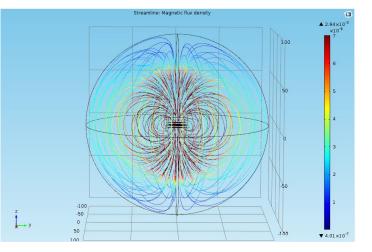
movers

- Act as a force & position actuator
- Gravity offloading
- On axis mechanism
- •Compact and lightweight

Development of Inductive Edge Sensor

•Sensor is based on the principle of mutual inductance measurement between two overlapping plane coils, which varies with the surfaces overlapping area and gap separation.

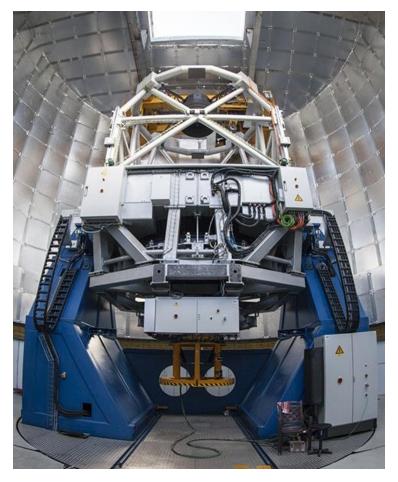
ELT, SALT, LMOST, I
other kind of Inductive sei
Not affected by humidity


Gap, height.

•Sensor technology is pat

	-
ltr	Va
->	
	21
5	v,
	່ີ
	2 -
	Vb

	dihedral angle	
Piston range	± 1.5	
Gap range	1- 5.0mm	
Piston Noise	< 5 nm	
Gap Noise	< 100nm	
Temporal drift	< 2nm day	


Dimensions

IUCAA is supporting in developing a precession sensor electronics.

Testing setup in ITCC ²⁹

Mass Optimization

3.6m DOT Telescope (India)

Total Telescope Mass = 150 Ton

SEIMEI 3.8 Telescope (Japan)

Mass of the OTA = 8 ton (mirror 4 ton) Total Moving Mass = 18 Ton (1/6 of a conventional telescope

Cost estimate for 4m Class Telescope (Rough)

Cost	Note
(\$k)	
2000	Zerodur blanks (@30k USD, Grinding Polishing, Figuring,
	Pocketing and hex cutting costs are considered to be 3X of the
	blank cost.
1000	Just guess work. At present we have no reliable input
100	Hex pad based secondary drive . Price quote from Symmetrie France
100	The pad based secondary drive . The quote from Symmetric Tranee
100	
126	Manufacturing cast of one segment support would be 7k\$
400	54 actuator and edge sensor . If use of the edge sensor is
	avoided then cost will reduce substantially
50	Manufacturing cost of the primary mirror cell along with
	accessories required for the registration.
200	
200	Manufacturing Cost includes, lower & Upper truss, secondary mirror
100	spider/housing, yoke, elevation ring, elevation, azimuth, drives etc.
100	Based on price quote obtained from ETEL motors, Renishaw
	Encoder and PAMAC controller.
300	2 FT for 2 years
50	A customized Sack Hartman device. The main cost driver may be
50	lenslet array and a small format CCD.
100	Assumed only critical design and analysis work will be out
400	
4700	sourced rest of activities will be handled in-house
 ∼ 4730	
	2000 1000 100 126

4m class telescope for MAO

- I. MAO being one of the best site in Asia deserve to host large telescope.
- II. At present, there are few 4m class telescope manufacture around the globe who can take project as a turnkey. However, this way ccost optimization may not be possible

III. .

- IV. Building 4m telescope is very much possible by Uzjbeck astronomical community
- V. itself, however, having international cooperation will make task simpler and faster.
- VI. Building telescope at institution level require skiil manpower power with domain knowledge. UBI should put effort in capacity building exresize.
- VII. Young scientists should be encourage to spend 30-40 % of their time in instruemntation related activities.

Acknowledgement

Radhika Dharmadhikari: For optical design and analysis

Abhishek Goudar: Mechanical Design:

Sandeep D S : Mechanical Analysis

Thank You for your Attention