Constraints on the Progenitor System of a Type Ia SN 2019ein from the Early Light Curve

Gu Lim^{1,2}, Myungshin Im^{1,2}, Dohyeong Kim³, Gregory S.H. Paek^{1,2}, Changsu Choi⁴, Sophia Kim^{1,2}, Sungyong Hwang^{1,2}, Shuhrat A. Ehgamberdiev⁵, Otabek Burkhonov⁵, Davron Mirzaqulov⁵, and IMSNG team

¹SNU Astronomy Research Center, Seoul National University (SNU), Korea
 ²Astronomy Program, Department of Physics and Astronomy, Seoul National University (SNU), Korea
 ³Department of Earth Science Education, Pusan National University (PNU), Korea
 ⁴Korea Astronomy and Space Science Institute (KASI), Korea
 ⁵Ulugh Beg Astronomical Institute (UBAI), Uzbek Academy of Sciences, Uzbekistan

6th Maidanak Users Meeting (MUM) 2021.11.02

Type la Supernovae

• Thermonuclear runaway of carbon-oxygen white dwarf (CO WD)

- A lack of H & He in their spectra
- Occurrence of some SNe Ia in elliptical galaxies

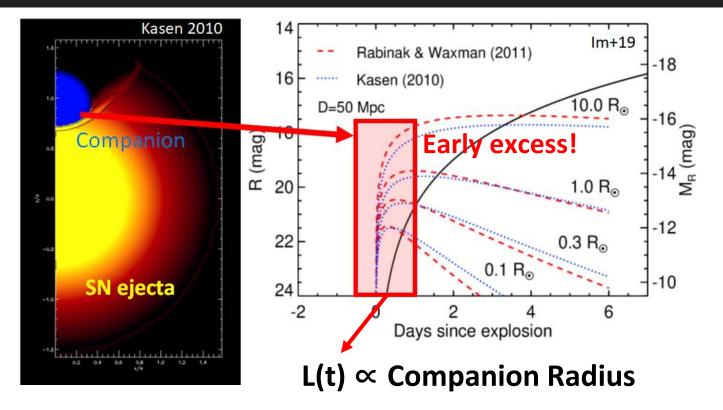
• Standard rising of SNe Ia light curve

- O Powered by radioactive decay of iron group elements (⁵⁶Ni, ⁵⁶Co, ⁵⁶Fe)
- O Power-law (flux \propto time^{α}, α ~2)

• Cosmological distance indicator

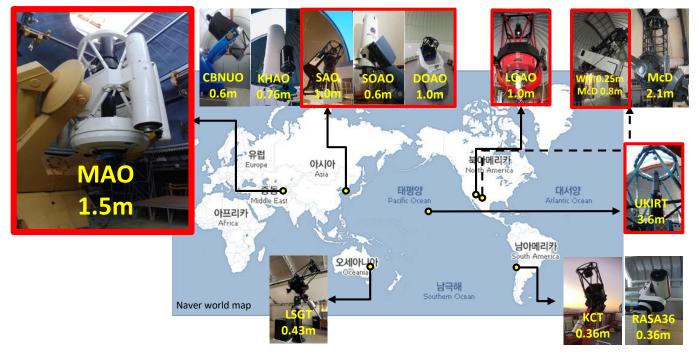
• The empirical relation btw the peak luminosity & the width of LC

Progenitor scenarios of SNe la

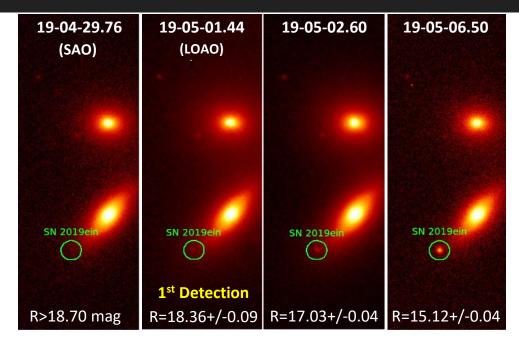

WD - MS or Red (Sub)giant (Single degenerate) Whenlan & Iben 1973, Hachisu+96

WD - WD (Double degenerate) Iben & Tutukov 1984

What is prevalent progenitor scenario for Type Ia SNe? Not enough observational evidence


Shock-heated cooling emission (Companion model)

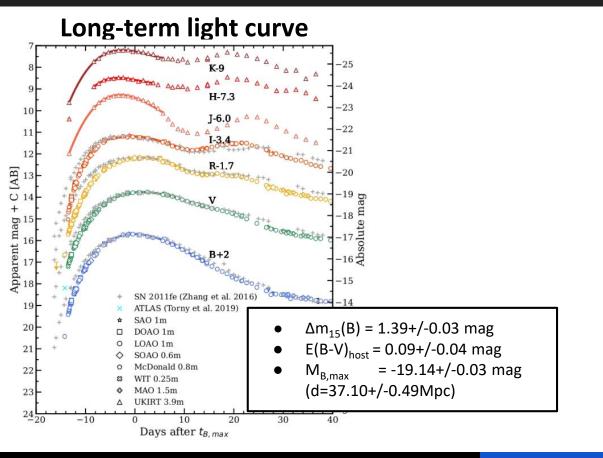
High-cadence monitoring < 1d is important


Intensive Monitoring Survey of Nearby Galaxies (IMSNG)

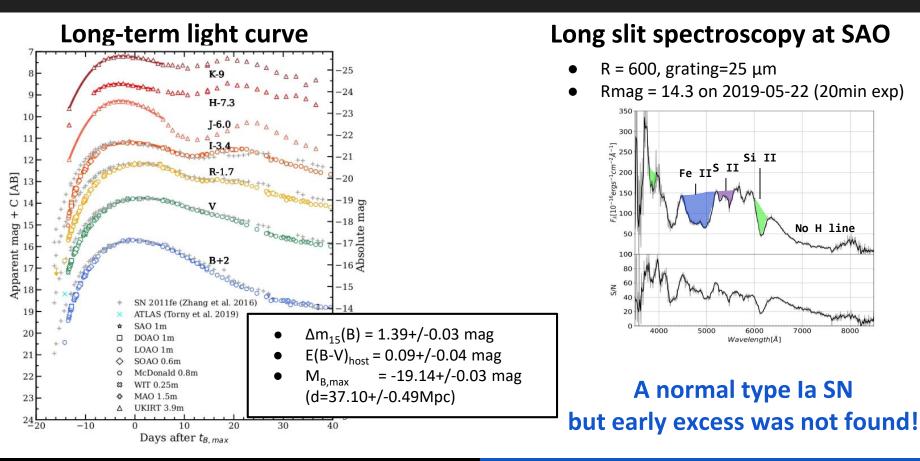
• High cadence (\leq 1day) monitoring of 60 nearby UV bright galaxies (Im et al. 2019)

Follow-up data from 7 facilities (including MAO, June 19~)

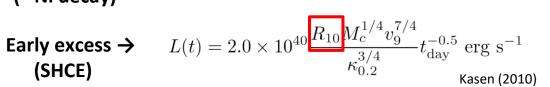
Early detection of SN 2019ein in NGC 5353



50 min earlier than the discovery report (Tonry et al. 2019, TNS) **9 hours earlier than Kawabata et al. 2020** Follow-up with BVRI+JHK > 4 months


Data reduction (gppy)

Basic characteristics of SN 2019ein



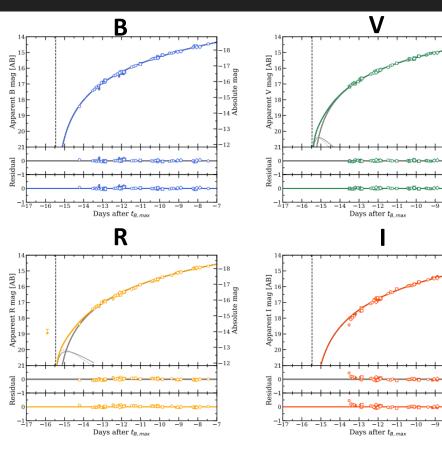
Basic characteristics of SN 2019ein

Early light curve

- **Companion model + Power-law**
 - χ^2 minimization fitting on the early data 0
 - Power-law \rightarrow $M(t) = M_0 - 2.5\alpha \log_{10}(t - t_{\rm fl})$ (⁵⁶Ni decay)

Rabinak & Waxman (2011) -18 16 Kasen (2010) 10.0 R_o D=50 Mpc -16 (mag) M^H (mag) R (mag) 18 1.0 R_o 20 -12 $0.3 R_{\odot}$ 22 0.1 R_o -10 24 -2 0 2 6 Days since explosion

(Opacity $\kappa_{0,2} = 1.0 \text{ cm}^2 \text{g}^{-1}$, Ejecta mass Mc = 1.0/1.4, Ejecta velocity v_0)


10 Free parameters : α , M_o (for BVRI), t_{fl}, R_{*}

First light time?

(1) One t_{fl} Same for BVRI bands?

(2) Use mean value of $t_{fl,B}$, $t_{fl,V}$, $t_{fl,R}$, and $t_{fl,I}$?

Early light curve fitting (1)

(1) Determine one t_{fl}

ĝ

-16 Ē

-15 -14 -14

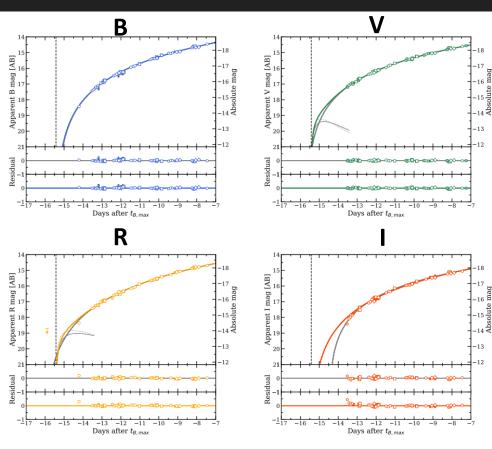
-13

-16 m

-15 lo

 $-14 \overset{sq}{\triangleleft}$

-13


-8

-8

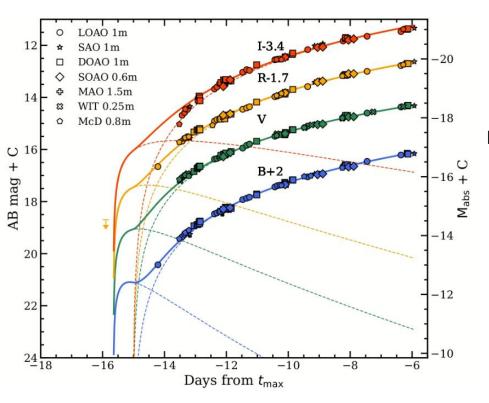
Band	lpha	m_0	$t_{ m fl}$	$\chi^2_{ u}$	$R_*[R_\odot]$
			(1)		
В	$1.929 {\pm} 0.039$	$18.829 {\pm} 0.110$	58603.185±0.087	3.398	-
V	$1.690 {\pm} 0.035$	$18.433 {\pm} 0.096$			$0.168{\pm}0.094$
R	$1.851 {\pm} 0.040$	$18.862 {\pm} 0.107$			$0.244{\pm}0.045$
Ι	$1.934{\pm}0.040$	$19.373 {\pm} 0.109$			-

• Very weak SHCE \rightarrow R_{*}=0.24R_o

Early light curve fitting (2)

(2) Use mean t_{fl} from the separate BVRI fitting

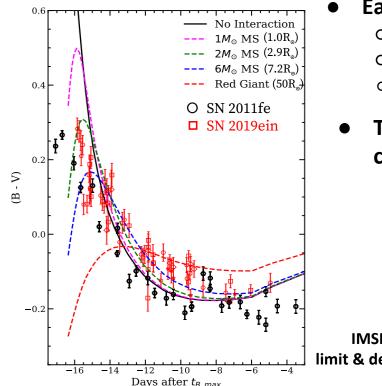
ag


______ beu

13

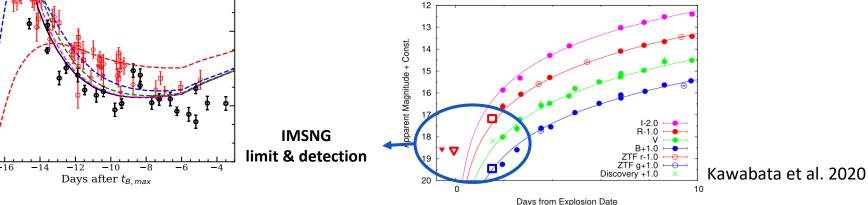
Band	α	m_0	$t_{ m fl}$	$\chi^2_{ u}$	$R_*[R_\odot]$
В	1.909 ± 0.006	$18.774 {\pm} 0.013$		1.28	-
V	$1.713 {\pm} 0.013$	$18.470 {\pm} 0.027$	58603.226 ± 0.57	1.89	0.577 ± 0.142
R	$1.927 {\pm} 0.019$	$19.023 {\pm} 0.042$		2.78	0.921 ± 0.144
Ι	$1.915 {\pm} 0.010$	$19.322 {\pm} 0.020$		4.95	-

Very weak SHCE \rightarrow R_{*}=0.92R


Early light curve fitting (3)

If there was SHCE,

Band	α	m_0	$t_{ m fl}$	$\chi^2_{ u}$	$R_*[R_\odot]$
В	1.80±0.07	18.41±0.21			
V	1.60 ± 0.07 1.60±0.05	18.12±0.18	58603.64±0.26	2.79	0.88±0.67
R	1.76±0.05	18.54±0.17			
Ι	1.87 ± 0.04	19.13±0.14			


Color & Previous study

Early color evolution

- Bright SHCE \rightarrow Blue at the early phase (Dashed line)
- Similar with SN 2011fe no SHCE
- \circ <2M_o MS (<2.9 R_o)?
- This result is agreed with Kawabata+20, giving a tight constraint on the companion size

 $O = R_* \simeq 4.3-7.6 R_{\odot}$ (Kawabata et al. 2020)

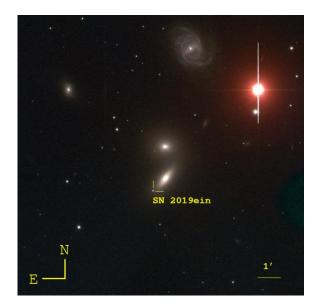
• No early blue excess :

• Early light curve fitting using the companion model $\rightarrow R_* < ~1R_{\odot}$

• Possible progenitor systems

- Low mass MS ~ $1R_{\odot}$ (Kasen 2010)
- Recurrent nova with a rapid mass accretion ~0.2R_o (Hachisu & Kato 2003)
- CO WD binary with the long delayed time $\sim 0.01R_{\odot}$ (Yoon et al. 2007)

Large companion can be ruled out via the companion model


Summary

1. Early detection of SN 2019ein (IMSNG)

- 50 min/9hours earlier (1st report/Kawabata et al. 2020)
- 1. SN 2019ein : normal SN Ia + no early excess
 - Long-term LC : Similar with the LC of SN 2011fe
 - Maidanak supports when SN is faint!
 - Spectroscopy : No H, He + Strong Si, S, Fe spectral features

1. Early light curve fitting using companion model

- ~1R_o sized companion star at maximum
- Large giant stars can be ruled out.

Maidanak BVR color (Lim in prep.)

Thank you very much